
Size effects in Kirchhoff flexible rods

R. J. Zhang*
School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

�Received 27 July 2009; revised manuscript received 12 February 2010; published 5 May 2010�

The Kirchhoff equations for flexible rods are extended to be able to describe size effects. Thus, the extended
equations are applicable not only for macroscopic rods but also for ultrathin rods whose thickness is close to
the material length. It is found that extensional size effects exist in flexible rods, namely, the external forces
exerted on both ends of rods will increase as the rods are getting thinner if an identical deformation is
remained.
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I. INTRODUCTION

In recent years, the Kirchhoff theory for flexible rods is
widely used to model a variety of flexible curves, ribbons,
cables, rods, and bars, even to model DNA �deoxyribo-
nucleic acid�, RNA �ribonucleic acid�, and bacterial fibers,
whether they have macroscopic or microscopic scale. How-
ever, any material has a characteristic length �material
length�, which depends on its microstructures. In perfect
crystals, the material length is probably submicroscopic. In
polycrystalline metals or granular materials, the material
length may be considerably larger. For example, in the ide-
alized case of a simple-cubic array of contiguous elastic
spheres, the material length is about three quarters of the
radius of a sphere. When rods get more slender and their
thickness is close to the material length, their bending and
twisting rigidity becomes larger than might be expected from
the classical theory of elasticity. This phenomenon is referred
to as the scale effects or size effects.

The material length of biomaterials has not thus far been
reported in literatures. However, the microstructures of fila-
mentlike biomaterials are observed in lots of experiments.
Now it is known that DNA and RNA are polymers with a
backbone consisting of a sugar-phosphate repeat unit, to each
of which is attached one member of a small set of organic
bases, generating the linear pattern of the genetic code. In the
form of a double helix, DNA is about 2.0 nm in diameter. It
might be expected that the material lengths of DNA and
RNA are measured by the size of their backbone monomer.
The smallest dimensions of DNA and RNA, their thickness,
might approach the same scale of their material length.

In order to describe the size effects of material properties,
the material length has to be introduced into the mechanical
model as an intrinsic parameter. As a result, the couple stress
theory �Toupin �1�, Koiter �2�, and Mindlin �3�� and the
strain gradient theory �Fleck and Hutchinson �4� and Fleck et
al. �5�� have been developed. Based on these theories, one
can successfully describe the size effects of material proper-
ties not only in simple structures but also in composites, for
example, in the particle reinforced aluminum �Kouzeli and
Mortensen �6��, in nanoscale thin films �Haque and Saif �7��,
and in the micropolar composite with fibers �Ma and Hu �8��.

Additionally, the Cosserat theory is also used to predict the
size effects in a variety of complex structures and compos-
ites, such as, the polycrystals and multiphase materials �For-
est et al. �9��. For measuring the plasticity length scale,
Stolken and Evans �10� proposed a microbend test method.

In the present paper, the material length as an intrinsic
parameter is introduced into the Kirchhoff theory for elastic
rods based on the couple stress theory. The extended theory
can then be applied to the ultrathin rods whose thickness is
close to their material length.

II. FLEXIBLE RODS

Consider a flexible slender rod with length of L. Suppose
that each cross section of the rod remains plane and perpen-
dicular to the rod’s neutral axis during deformation. The
rod’s neutral axis coincides with the centroid of the rod’s
cross section and is a space curve.

Choose a set of principal axes of cross sections as the
rod’s local coordinate axes �P−xyz�. The associated coordi-
nate basis is �P−e1e2T�, where the base vectors e1 and e2 are
along the principal axes of cross sections and T is the tangent
vector along the rod’s neutral axis.

The rotation rate of cross sections with respect to the fixed
reference frame from the point of view of an observer mov-
ing along the neutral axis at unit speed is denoted in terms of

� = �1e1 + �2e2 + �3T, �1�

which is the absolute rotation rate of cross sections and can
be determined by use of the Darboux vector.

The evolution of the coordinate basis �P−e1e2T�, the
principal axes of cross sections, can be described by

de1

ds
= � � e1, �2a�

de2

ds
= � � e2, �2b�

dT

ds
= � � T . �2c�

III. EQUILIBRIUM EQUATIONS

Besides the assumption of “plane sections remain plane,”
we suppose that rods are homogeneous and isotropic. There*zhangrj@tongji.edu.cn
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exists a linear relationship between stresses and strains in
rods. Volume forces and the contact forces with other rods
are neglected. Rods do not have initial curvature and twist.

Consider an infinitesimal element of rods that is of length
ds shown in Fig. 1. The internal forces F and moments M
applied on the both ends satisfy the equilibrium equations

dF

ds
= 0, �3a�

dM

ds
+ T � F = 0. �3b�

After a transformation to the principal-axis coordinates �P
−e1e2T�, the above equations become

dF

ds
+ � � F = 0, �4�

dM

ds
+ � � M + T � F = 0. �5�

Equation �3a� implies that the internal forces F are a con-
stant vector in the fixed reference frame. Let the fixed coor-
dinate axis � be parallel to the direction of F. Denoting the
direction cosines of the � axis with respect to each axis of
�P−xyz� in terms of �1, �2, and �, respectively, we have

F1 = F�1, F2 = F�2, F3 = F� , �6�

where F1, F2, and F3 are the components of F in the
principal-axis coordinates and F= �F�. Substituting Eqs. �1�
and �6� into Eq. �4� gives the equation of equilibrium of
forces in the component form

d�1

ds
+ �2� − �3�2 = 0, �7a�

d�2

ds
+ �3�1 − �1� = 0, �7b�

d�

ds
+ �1�2 − �2�1 = 0. �7c�

Similarly, the equation of equilibrium of moments �5� can be
written in the component form

dM1

ds
+ �2M3 − �3M2 − F2 = 0, �8a�

dM2

ds
+ �3M1 − �1M3 + F1 = 0, �8b�

dM3

ds
+ �1M2 − �2M1 = 0, �8c�

where M1, M2, and M3 are the components of M in the
principal-axis coordinates.

Equations �7� and �8� together are six equations for the
nine unknowns. We may eliminate M1, M2, and M3 in Eq.
�8� by using the linear relationship between internal mo-
ments M and curvatures �, which is

M1 = a�1, M2 = b�2, M3 = c�3, �9�

where a and b are the bending rigidity about the principal
axes x and y of cross sections, respectively, and c is the
twisting rigidity about the z axis, i.e., the rod’s axis. Substi-
tuting Eq. �9� into Eq. �8� yields

a
d�1

ds
+ �c − b��2�3 − F�2 = 0, �10a�

b
d�2

ds
+ �a − c��3�1 + F�1 = 0, �10b�

c
d�3

ds
+ �b − a��1�2 = 0. �10c�

In order to determine the rigidities a, b, and c, the pure
bending of a prismatic beam and the torsion of a cylindrical
rod has to be discussed.

IV. BENDING RIGIDITY AND SIZE EFFECTS

Consider the pure bending of a prismatic beam of an iso-
tropic Hookean material. Suppose the beam at its ends is
subjected to two equal and opposite couples M acting in its
principal plane of bending. Let the origin of the coordinates
be taken at the centroid of a cross section and let the x ,y
plane be the principal plane. The usual theory of bending
assumes that the stress components are

�zz =
Ey

R
, �xx = �yy = �xy = �yz = �zx = 0, �11�

in which E is Young’s modulus and R is the radius of curva-
ture of the beam after bending. The bending moment about x
axis due to the normal stress �zz in Fig. 2 is therefore

o

r

d+r r

dr−M

−F

d+F F

d+M M

FIG. 1. Internal forces and moments.
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M� = �
S

y�zzdS =
EIx

R
, �12�

where Ix is the moment of inertia of the beam’s cross-
sectional area about the x axis and S is the beam’s cross-
sectional area.

Now let us suppose, according to the couple stress theory
developed by Mindlin �3�, that not only the normal stress �zz
but also a couple stress �zx acts on an element dS of the
beam’s cross section as shown in Fig. 2. Moreover, the
couple stress is proportional to the curvature

��zx =
B1

R

�xx = �yy = �zz = �xy = �yx = �yz = �zy = �xz = 0,
�

�13�

where B1 is a modulus of curvature. Note that the distribu-
tion of the couple stress �zx on the cross section is uniform
because the radius of curvature R at an arbitrary point of the
beam is identical.

Obviously, integrating the couple stress �zx over the cross
section also yields a bending moment

M� = �
S

�zxdS = �zxS . �14�

By substituting Eq. �13� into Eq. �14�, we obtain

M� =
B1

R
S . �15�

The total bending moments consist of both M� and M�. They
are equal to the external couples M acting on the ends of the
beam, so that

M = M� + M� =
�EIx + B1S�

R
. �16�

Similar to the way indicated by Mindlin �3�, a material
length l can be defined in terms of the ratio

B1

E
= l2. �17�

Then, Eq. �16� becomes

M

E�Ix + l2S�
=

1

R
. �18�

It can be seen that the bending rigidity of the beam be-
comes E�Ix+ l2S� instead of EIx in the Bernoulli beam theory
if the couple stresses are taken into account. The new term
l2S in the bending rigidity expresses size effects.

When the cross section of beams is circular, the bending
rigidity becomes

E�Ix + l2S� = EIx	1 + 4
 l

	
�2� , �19�

where 	 is the rod’s diameter.
Thus, the bending rigidities of the flexible slender rods a

and b in Eq. �10� can finally be written in the form

a = A	1 + 4
 l

	
�2� and b = B	1 + 4
 l

	
�2� , �20�

in which

A = EIx, B = EIy . �21�

V. TWISTING RIGIDITY AND SIZE EFFECTS

Let us consider the torsion of a cylindrical rod of circular
cross section. See Fig. 3, which shows the notations and the
ordinate axes to be used. The rod is acted on its ends by a
torque T.

The nonvanishing components of stresses in cross sec-
tions are the shears �zx and �zy, from which a symmetric part
can be obtained as

�zx
s =

1

2
��zx + �xz�,�zy

s =
1

2
��zy + �yz� . �22�

They obey the usual stress-strain relation

�zx
s = − G
y, �zy

s = G
x , �23�

where G is shear modulus and 
 is the twist per unit axial
length. In addition, based on the couple stress theory, there is
a couple stress �zz in cross sections.

zzxµ

dS
zzσ

y

x

FIG. 2. Normal stress and couple stress acting on an element
dS.

zyσ

zzµ

zxσ

T

x

y

z

FIG. 3. Torsion of a circular rod.
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The linear relationship between �zz and 
 is written as

�zz = B2
 , �24�

where the proportional constant B2 and the modulus of cur-
vature B1 are related by

B2 =
B1

1 + �
. �25�

The resultant moment about the z axis is

� � �x�zy
s − y�zx

s �dxdy +� � �zzdxdy . �26�

Substituting Eqs. �23�–�25� into Eq. �26� and letting the re-
sultant moment be equal to the torque T yield

T = GIz
 +
B1S


1 + �
, �27�

where Iz is the polar moment of inertia of the cylinder cross-
sectional area.

By introducing the material length l from Eq. �17�, Eq.
�27� is rewritten as

T = G�Iz + 2l2S�
 . �28�

For the circular cross sections, we have

T = GIz	1 + 4
 l

	
�2�
 . �29�

Obviously, the twisting rigidity becomes GIz�1+4� l
	 �2� in

the extended theory instead of GIz as in classical elasticity
when the size effects are taken into account. Thus, the twist-
ing rigidity of the flexible slender rod c in Eq. �10� can
finally be written in the form

c = C	1 + 4
 l

	
�2� , �30�

in which

C = GIz. �31�

Substituting Eqs. �20� and �30� into Eq. �10� gives

A
d�1

ds
+ �C − B��2�3 −

1

	1 + 4
 l

	
�2�F�2 = 0, �32a�

B
d�2

ds
+ �A − C��3�1 +

1

	1 + 4
 l

	
�2�F�1 = 0, �32b�

C
d�3

ds
+ �B − A��1�2 = 0. �32c�

Equations �7� and �32� are the final equations.
It can be seen that an additional factor �1+4� l

	 �2� arises in
the above equations in comparison to the Kirchhoff equa-

tions �11�. Obviously, the factor expresses the size effects.
When the rod’s diameter 	 is greatly larger than the material
length l, the size effect term 4� l

	 �2 is negligible and then the
above equations reduce to the Kirchhoff equations. Contrar-
ily, when the rod’s diameter 	 is close to the material length
l, the size effect term 4� l

	 �2 has to be taken into account and
even becomes a leading term in the factor �1+4� l

	 �2�. It is
well known that the material length of most metals is of the
order of 1 micron. This indicates that the extended equation
in the present paper is applicable for the metallic rods of
micron scale in thickness. Moreover, the extended equations
in the present paper seem to be applicable for modeling
DNA, RNA, and bacterial fibers instead of the Kirchhoff
equations.

VI. SIZE EFFECTS IN EXTENSIONAL DEFORMATION

It can be verified that the extended Eqs. �7� and �32� can
be obtained in the simple way that the magnitude of the
internal forces F in the Kirchhoff equations are divided by
the factor �1+4� l

	 �2�. This means that the external forces
exerted on both ends of rods have to be magnified by the
factor �1+4� l

	 �2� to remain an identical deformation of rods
because the bending and twisting rigidities of the rods in-
crease by the same factor as shown in Eqs. �20� and �30�.
Obviously, the factor expresses the size effects. Thus, one
would feel that the extensional rigidity of the ultrathin rods
seems to be larger than might be expected from the classical
elasticity when the rods are getting thinner and the diameter
of rods is close to the material length.

VII. CONCLUSIONS

�1� The Kirchhoff equations for flexible rods are extended
to Eqs. �7� and �32� in the present paper, which are appli-
cable not only for macroscopic flexible rods but also for so
ultrathin flexible rods whose thicknesses are close to the ma-
terial length.

�2� The extended equations can be easily obtained by di-
viding the magnitude of internal forces F in the Kirchhoff
equations by the factor �1+4� l

	 �2�, for the rods of circular
cross sections, in which the term 4� l

	 �2 measures the size
effects

�3� The extensional rigidity of ultrathin rods would be
larger than might be expected from the classical elasticity.
This is because the increase of the bending and twisting ri-
gidities requires that the external force exerted on both ends
of the rod be increased by an equal factor to countervail the
decrease of the internal forces so that an identical deforma-
tion of the rods is maintained. This is the size effects in
extensional deformation of rods.
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